Lotka–Volterra models with fractional diffusion
نویسندگان
چکیده
منابع مشابه
Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملTuring pattern formation with fractional diffusion and fractional reactions
We have investigated Turing pattern formation through linear stability analysis and numerical simulations in a two-species reaction–diffusion system in which a fractional order temporal derivative operates on both species, and on both the diffusion term and the reaction term. The order of the fractional derivative affects the time onset of patterning in this model system but it does not affect ...
متن کاملNumerical Simulation of Fractional Riesz Space Nonlinear Reaction-Diffusion Models
Fractional differential equations have attracted considerable interest because of their ability to model anomalous transport phenomena. Fractional nonlinear reaction-diffusion models have found numerous applications in patten formation in biology, chemistry, physics and Engineering. Obtaining analytical solutions of fractional nonlinear reaction-diffusion models is difficult, generally numerica...
متن کاملDiffusion process modeling by using fractional-order models
This paper deals with a concept and description of a RC network as an electro-analog model of diffusion process which enables to simulate heat dissipation under different initial and boundary conditions. It is based on well-known analogy between heat and electrical conduction. In the paper are compared analytical solution together with numerical solution and experimentally measured data. For th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
سال: 2017
ISSN: 0308-2105,1473-7124
DOI: 10.1017/s0308210516000305